Brands
3Com
Alcatel-Lucent
Allied-Telesis
Avaya
Brocade
Cisco
D-Link
Dell
Emulex
Enterasys
Extreme
Force10
Foundry
H3C
HP
Huawei
Intel
Juniper
Linksys
Marconi
McAfee
Netgear
Nortel
Planet
Qlogic
Redback
SMC
Sun
TRENDnet
Vixel
ZTE
ZyXEL

Fiber Optic Wiki

External parallel ATA devices

July 11, 2011

It is extremely uncommon to find external PATA devices that directly use the interface for connection to a computer. PATA is primarily restricted to devices installed internally, due to the short data cable specification. A device connected externally needs additional cable length to form a U-shaped bend so that the external device may be placed alongside, or on top of the computer case, and the standard cable length is too short to permit this.

ATA standards versions, transfer rates, and features

July 11, 2011

The following table shows the names of the versions of the ATA standards and the transfer modes and rates supported by each. Note that the transfer rate for each mode (for example, 66.7 MB/s for UDMA4, commonly called "Ultra-DMA 66", defined by ATA-5) gives its maximum theoretical transfer rate on the cable. This is simply two bytes multiplied by the effective clock rate, and presumes that every clock cycle is used to transfer end-user data. In practice, of course, protocol overhead reduces this value.

ATAPI Removable Media Device (ARMD)

July 11, 2011

ATAPI devices with removable media, other than CD and DVD drives, are classified as ARMD (ATAPI Removable Media Device) and can appear as either a super-floppy (non-partitioned media) or a hard drive (partitioned media) to the operating system. These can be supported as bootable devices by a BIOS complying with the ATAPI Removable Media Device BIOS Specification,[30] originally developed by Compaq Computer Corporation and Phoenix Technologies. It specifies provisions in the BIOS of a personal computer to allow the computer to be bootstrapped from devices such as Zip drives, Jaz drives, SuperDisk (LS-120) drives, and similar devices.

Multiple devices on a cable

July 9, 2011

If two devices attach to a single cable, one must be designated as device 0 (commonly referred to as master) and the other as device 1 (slave). This distinction is necessary to allow both drives to share the cable without conflict. The master drive is the drive that usually appears "first" to the computer's BIOS and/or operating system. On old BIOSes (Intel 486 era and older), the drives are often referred to by the BIOS as "C" for the master and "D" for the slave following the way DOS would refer to the active primary partitions on each.

Cable select

July 9, 2011

A drive mode called cable select was described as optional in ATA-1 and has come into fairly widespread use with ATA-5 and later. A drive set to "cable select" automatically configures itself as master or slave, according to its position on the cable. Cable select is controlled by pin 28. The host adapter grounds this pin; if a device sees that the pin is grounded, it becomes the master device; if it sees that pin 28 is open, the device becomes the slave device.

Master and slave clarification

July 9, 2011

Although they are in extremely common use, the terms "master" and "slave" do not actually appear in current versions of the ATA specifications. The two devices are simply referred to as "device 0" and "device 1", respectively, in ATA-2 and later.

Bestsellers
10GBASE-SR SFP+ 850nm 300m
SFP-10G-SR
5 out of 5 Stars! $175.00
5 out of 5 Stars!
1000BASE-SX SFP 850nm 550m
GLC-SX-MM
5 out of 5 Stars! $25.00
5 out of 5 Stars!
1000BASE-T SFP RJ45 100m
GLC-T
0 out of 5 Stars! $45.00
0 out of 5 Stars!
10GBASE-LR SFP+ 1310nm 10km
SFP-10G-LR
0 out of 5 Stars! $399.00
0 out of 5 Stars!