November 21, 2011
In telecommunications and computer networks, multiplexing (also known as muxing) is a method by which multiple analog message signals or digital data streams are combined into one signal over a shared medium. The aim is to share an expensive resource. For example, in telecommunications, several telephone calls may be carried using one wire. Multiplexing originated in telegraphy, and is now widely applied in communications.
November 21, 2011
Multiplexing technologies may be divided into several types, all of which have significant variations:[1] space-division multiplexing (SDM), frequency-division multiplexing (FDM), time-division multiplexing (TDM), and code division multiplexing (CDM).
November 21, 2011
In wired communication, space-division multiplexing simply implies different point-to-point wires for different channels. Examples include an analogue stereo audio cable, with one pair of wires for the left channel and another for the right channel, and a multipair telephone cable.
November 21, 2011
Frequency-division multiplexing (FDM) is inherently an analog technology. FDM achieves the combining of several digital signals into one medium by sending signals in several distinct frequency ranges over that medium.One of FDM's most common applications is cable television. Only one cable reaches a customer's home but the service provider can send multiple television channels or signals simultaneously over that cable to all subscribers. Receivers must tune to the appropriate frequency (channel) to access the desired signal.
November 19, 2011
Amplification is achieved by stimulated emission of photons from dopant ions in the doped fiber. The pump laser excites ions into a higher energy from where they can decay via stimulated emission of a photon at the signal wavelength back to a lower energy level. The excited ions can also decay spontaneously (spontaneous emission) or even through nonradiative processes involving interactions with phonons of the glass matrix. These last two decay mechanisms compete with stimulated emission reducing the efficiency of light amplification.
November 19, 2011
The erbium-doped fiber amplifier (EDFA) is the most deployed fiber amplifier as its amplification window coincides with the third transmission window of silica-based optical fiber.Two bands have developed in the third transmission window – the Conventional, or C-band, from approximately 1525 nm – 1565 nm, and the Long, or L-band, from approximately 1570 nm to 1610 nm. Both of these bands can be amplified by EDFAs, but it is normal to use two different amplifiers, each optimized for one of the bands.