Brands
3Com
Alcatel-Lucent
Allied-Telesis
Avaya
Brocade
Cisco
D-Link
Dell
Emulex
Enterasys
Extreme
Force10
Foundry
H3C
HP
Huawei
Intel
Juniper
Linksys
Marconi
McAfee
Netgear
Nortel
Planet
Qlogic
Redback
SMC
Sun
TRENDnet
Vixel
ZTE
ZyXEL

Fiber Optic Wiki

Computer networks and the Internet

May 9, 2012

On 11 September 1940, George Stibitz was able to transmit problems using teleprinter to his Complex Number Calculator in New York and receive the computed results back at Dartmouth College in New Hampshire. This configuration of a centralized computer or mainframe computer with remote "dumb terminals" remained popular throughout the 1950s and into the 60's. However, it was not until the 1960s that researchers started to investigate packet switching — a technology that allows chunks of data to be sent between different computers without first passing through a centralized mainframe. A four-node network emerged on December 5, 1969. This network soon became the ARPANET, which by 1981 would consist of 213 nodes.

What is Bandwidth–distance product?

May 8, 2012

Because the effect of dispersion increases with the length of the fiber, a fiber transmission system is often characterized by its bandwidth–distance product, usually expressed in units of MHz×km. This value is a product of bandwidth and distance because there is a trade off between the bandwidth of the signal and the distance it can be carried. For example, a common multi-mode fiber with bandwidth–distance product of 500 MHz×km could carry a 500 MHz signal for 1 km or a 1000 MHz signal for 0.5 km.

What is Transatlantic communications cable?

May 8, 2012

A transatlantic telecommunications cable is a submarine communications cable running under the Atlantic Ocean. All modern cables use fibre optic technology.

What is Multi-mode optical fiber?

May 8, 2012

Multi-mode optical fiber (multimode fiber or MM fiber or fibre) is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Typical multimode links have data rates of 10 Mbit/s to 10 Gbit/s over link lengths of up to 600 meters (300 m for 10 Gbit/s)—more than sufficient for the majority of premises applications.

Applications of Multi-mode optical fiber

May 8, 2012

The equipment used for communications over multi-mode optical fiber is less expensive than that for single-mode optical fiber. Typical transmission speed and distance limits are 100 Mbit/s for distances up to 2 km (100BASE-FX), 1 Gbit/s to 220–550 m (1000BASE-SX), and 10 Gbit/s to 300 m (10GBASE-SR).

Multi-mode optical fiber Comparise with single-mode fiber

May 8, 2012

The main difference between multi-mode and single-mode optical fiber is that the former has much larger core diameter, typically 50–100 micrometers; much larger than the wavelength of the light carried in it. Multi-mode fiber has higher "light-gathering" capacity than single-mode fiber. In practical terms, the larger core size simplifies connections and also allows the use of lower-cost electronics such as light-emitting diodes (LEDs) and vertical-cavity surface-emitting lasers (VCSELs) which operate at the 850 nm and 1300 nm wavelength (single-mode fibers used in telecommunications operate at 1310 or 1550 nm and require more expensive laser sources. Single mode fibers exist for nearly all visible wavelengths of light). However, compared to single-mode fibers, the multi-mode fiber bandwidth-distance product limit is lower. Because multi-mode fiber has a larger core-size than single-mode fiber, it supports more than one propagation mode; hence it is limited by modal dispersion, while single mode is not. The LED light sources sometimes used with multi-mode fiber produce a range of wavelengths and these each propagate at different speeds. In contrast, the lasers used to drive single-mode fibers produce coherent light of a single wavelength. This chromatic dispersion is another limit to the useful length for multi-mode fiber optic cable. Because of their larger core size, multi-mode fibers have higher numerical apertures which means they are better at collecting light than single-mode fibers. Due to the modal dispersion in the fiber, multi-mode fiber has higher pulse spreading rates than single mode fiber, limiting multi-mode fiber’s information transmission capacity.

Bestsellers
10GBASE-SR SFP+ 850nm 300m
SFP-10G-SR
5 out of 5 Stars! $175.00
5 out of 5 Stars!
1000BASE-SX SFP 850nm 550m
GLC-SX-MM
5 out of 5 Stars! $25.00
5 out of 5 Stars!
1000BASE-T SFP RJ45 100m
GLC-T
0 out of 5 Stars! $45.00
0 out of 5 Stars!
10GBASE-LR SFP+ 1310nm 10km
SFP-10G-LR
0 out of 5 Stars! $399.00
0 out of 5 Stars!