Brands
3Com
Alcatel-Lucent
Allied-Telesis
Avaya
Brocade
Cisco
D-Link
Dell
Emulex
Enterasys
Extreme
Force10
Foundry
H3C
HP
Huawei
Intel
Juniper
Linksys
Marconi
McAfee
Netgear
Nortel
Planet
Qlogic
Redback
SMC
Sun
TRENDnet
Vixel
ZTE
ZyXEL

Fiber Optic Wiki

Parallel optical interface

September 13, 2011

The main applications for parallel optic interfaces are found in telecommunications and supercomputers. It displaces copper backplanes that are commonly used for large switching equipment design.

Last mile of optical fiber

September 12, 2011

Although fiber-optic systems excel in high-bandwidth applications, optical fiber has been slow to achieve its goal of fiber to the premises or to solve the last mile problem. However, as bandwidth demand increases, more and more progress towards this goal can be observed. In Japan, for instance EPON has largely replaced DSL as a broadband Internet source. South Korea’s KT also provides a service called FTTH (Fiber To The Home), which provides 100 percent fiber-optic connections to the subscriber’s home.

Comparison with electrical transmission

September 12, 2011

A mobile fiber optic splice lab being used to access and splice underground cables.

Governing standards in fiber optic communication

September 12, 2011

In order for various manufacturers to be able to develop components that function compatibly in fiber optic communication systems, a number of standards have been developed. The International Telecommunications Union publishes several standards related to the characteristics and performance of fibers themselves, including:

Optical fiber and Optical fiber cable

September 10, 2011

An optical fiber consists of a core, cladding, and a buffer (a protective outer coating), in which the cladding guides the light along the core by using the method of total internal reflection. The core and the cladding (which has a lower-refractive-index) are usually made of high-quality silica glass, although they can both be made of plastic as well. Connecting two optical fibers is done by fusion splicing or mechanical splicing and requires special skills and interconnection technology due to the microscopic precision required to align the fiber cores.

Optical amplifier

September 10, 2011

The transmission distance of a fiber-optic communication system has traditionally been limited by fiber attenuation and by fiber distortion. By using opto-electronic repeaters, these problems have been eliminated. These repeaters convert the signal into an electrical signal, and then use a transmitter to send the signal again at a higher intensity than it was before. Because of the high complexity with modern wavelength-division multiplexed signals (including the fact that they had to be installed about once every 20 km), the cost of these repeaters is very high.

Bestsellers
10GBASE-SR SFP+ 850nm 300m
SFP-10G-SR
5 out of 5 Stars! $175.00
5 out of 5 Stars!
1000BASE-SX SFP 850nm 550m
GLC-SX-MM
5 out of 5 Stars! $25.00
5 out of 5 Stars!
1000BASE-T SFP RJ45 100m
GLC-T
0 out of 5 Stars! $45.00
0 out of 5 Stars!
10GBASE-LR SFP+ 1310nm 10km
SFP-10G-LR
0 out of 5 Stars! $399.00
0 out of 5 Stars!