Brands
3Com
Alcatel-Lucent
Allied-Telesis
Avaya
Brocade
Cisco
D-Link
Dell
Emulex
Enterasys
Extreme
Force10
Foundry
H3C
HP
Huawei
Intel
Juniper
Linksys
Marconi
McAfee
Netgear
Nortel
Planet
Qlogic
Redback
SMC
Sun
TRENDnet
Vixel
ZTE
ZyXEL

What is Plastic optical fiber?

Plastic optical fiber (POF) (or Polymer optical fibre) is an optical fiber which is made out of plastic. Traditionally PMMA (acrylic) is the core material, and fluorinated polymers are the cladding material. Since the late 1990s however, much higher-performance POF based on perfluorinated polymers (mainly polyperfluorobutenylvinylether) has begun to appear in the marketplace.

In large-diameter fibers, 96% of the cross section is the core that allows the transmission of light. Similar to traditional glass fiber, POF transmits light (or data) through the core of the fiber. The core size of POF is in some cases 100 times larger than glass fiber.

POF has been called the "consumer" optical fiber because the fiber and associated optical links, connectors, and installation are all inexpensive. Due to the attenuation and distortion characteristics of the traditional PMMA fibers are commonly used for low-speed, short-distance (up to 100 meters) applications in digital home appliances, home networks, industrial networks (PROFIBUS, PROFINET), and car networks (MOST). The perfluorinated polymer fibers are commonly used for much higher-speed applications such as data center wiring and building LAN wiring.

In relation to the future request of high-speed home networking, there has been an increasing interest in POF as a possible option for next-generation Gigabit/s links inside the house. To this end, several European Research projects are active, such as POF-ALL [1] and POF-PLUS .Several standardization bodies at country, european and WW levels are currently developing Gigabit communication standards for POF aimed towards Home networking applications. It is expected the release at the beginning of 2012.  The future Gigabit POF standard is based on multilevel PAM modulation a Frame structure, Tomlinson-Harashima Precoding and Multilevel coset coding modulation. The combination of all these techniques has proven to be the most efficient way of achieving low cost implementations at the same time that the transmission theoretical maximum capacity of the POF is approached. Other alternatives like DMT, PAM-2 NRZ, DFE equalization or PAM-4 have inferior performance and lead to more expensive implementations.

For telecommunications, the more difficult-to-use glass optical fiber is more common. This fiber has a core made of germania-doped silica. Although the actual cost of glass fibers are similar to the plastic fiber, their installed cost is much higher due to the special handling and installation techniques required.

One of the most exciting developments in polymer fibers has been the development of microstructured polymer optical fibers (mPOF), a type of photonic crystal fiber. POF fiber also has applications in sensing. It is possible to write Fiber Bragg grating in single and multimode mode POF. There are advantages in doing this over using silica fiber since the POF can be stretched further without breaking, some applications are described in the PHOSFOS project page.

POF in short:

1.PMMA & Polystyrene are used as fiber core, with refractive indices of 1.49 & 1.59 respectively.
2.Generally, fiber cladding is made of silicone resin (refractive index ~1.46).
3.High refractive index difference is maintained between core and cladding.
4.POF have high numerical aperture.
5.Have high mechanical flexibility and low cost.

May 17, 2012
Bestsellers
10GBASE-SR SFP+ 850nm 300m
SFP-10G-SR
5 out of 5 Stars! $175.00
5 out of 5 Stars!
1000BASE-SX SFP 850nm 550m
GLC-SX-MM
5 out of 5 Stars! $25.00
5 out of 5 Stars!
1000BASE-T SFP RJ45 100m
GLC-T
0 out of 5 Stars! $45.00
0 out of 5 Stars!
10GBASE-LR SFP+ 1310nm 10km
SFP-10G-LR
0 out of 5 Stars! $399.00
0 out of 5 Stars!