Fiber:Graphene saturable absorbers
Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Optical absorption from graphene can become saturated when the input optical intensity is above a threshold value. This nonlinear optical behavior is termed saturable absorption and the threshold value is called the saturation fluency.[citation needed] Graphene can be saturated readily under strong excitation over the visible to near-infrared region, due to the universal optical absorption and zero band gap.This has relevance for the mode locking of fiber lasers, where wideband tunability may be obtained using graphene as the saturable absorber.
Due to this special property, graphene has wide application in ultrafast photonics. Furthermore, comparing with the SWCNTs, as graphene has a 2D structure it should have much smaller non-saturable loss and much higher damage threshold. Self-started mode locking and stable soliton pulse emission with high energy have been achieved with a graphene saturable absorber in an erbium-doped fiber laser.Atomic layer graphene possesses wavelength-insensitive ultrafast saturable absorption, which can be exploited as a “full-band” mode locker. With an erbium-doped dissipative soliton fiber laser mode locked with few layer graphene, it has been experimentally shown that dissipative solitons with continuous wavelength tuning as large as 30 nm (1570–1600 nm) can be obtained.
July 13, 2011