Brands
3Com
Alcatel-Lucent
Allied-Telesis
Avaya
Brocade
Cisco
D-Link
Dell
Emulex
Enterasys
Extreme
Force10
Foundry
H3C
HP
Huawei
Intel
Juniper
Linksys
Marconi
McAfee
Netgear
Nortel
Planet
Qlogic
Redback
SMC
Sun
TRENDnet
Vixel
ZTE
ZyXEL

Fiber optical:Active mode locking

Active mode-locking is normally achieved by modulating the loss (or gain) of the laser cavity at a repetition rate equivalent to the cavity frequency, or a harmonic thereof. In practice, the modulator can be acousto-optic or electro-optic modulator, Mach-Zehnder integrated-optic modulators, or a semiconductor electroabsorption modulator (EAM). The principle of active mode-locking with a sinusoidal modulation. In this situation, optical pulses will form in such a way as to minimize the loss from the modulator. The peak of the pulse would automatically adjust in phase to be at the point of minimum loss from the modulator. Because of the slow variation of sinusoidal modulation, it is not very straightforward for generating ultrashort optical pulses (< 1ps) using this method.

For stable operation, the cavity length must precisely match the period of the modulation signal or some integer multiple of it. The most powerful technique to solve this is regenerative mode locking i.e. a part of the output signal of the mode-locked laser is detected; the beatnote at the round-trip frequency is filtered out from the detector, and sent to an amplifier, which drives the loss modulator in the laser cavity. This procedure enforces synchronism if the cavity length undergoes fluctuations due to acoustic vibrations or thermal expansion. By using this method, highly stable mode-locked lasers have been achieved . The major advantage of active mode-locking is that it allows synchronized operation of the mode-locked laser to an external radio frequency (RF) source. This is very useful for optical fiber communication where synchronization is normally required between optical signal and electronic control signal. Also active mode-locked fiber can provide much higher repetition rate than passive mode-locking. Currently, fiber lasers and semiconductor diode lasers are the two most important types of lasers where active mode-locking are applied.

July 13, 2011
Bestsellers
10GBASE-SR SFP+ 850nm 300m
SFP-10G-SR
5 out of 5 Stars! $175.00
5 out of 5 Stars!
1000BASE-SX SFP 850nm 550m
GLC-SX-MM
5 out of 5 Stars! $25.00
5 out of 5 Stars!
1000BASE-T SFP RJ45 100m
GLC-T
0 out of 5 Stars! $45.00
0 out of 5 Stars!
10GBASE-LR SFP+ 1310nm 10km
SFP-10G-LR
0 out of 5 Stars! $399.00
0 out of 5 Stars!