One use for multiplexers is cost savings by connecting a multiplexer and a demultiplexer (or demux) together over a single channel (by connecting the multiplexer's single output to the demultiplexer's single input). The image to the right demonstrates this. In this case, the cost of implementing separate channels for each data source is more expensive than the cost and inconvenience of providing the multiplexing/demultiplexing functions.
In a physical analogy, consider the merging behaviour of commuters crossing a narrow bridge; vehicles will take turns using the few available lanes. Upon reaching the end of the bridge they will separate into separate routes to their destinations.
At the receiving end of the data link a complementary demultiplexer is normally required to break single data stream back down into the original streams. In some cases, the far end system may have more functionality than a simple demultiplexer and so, while the demultiplexing still exists logically, it may never actually happen physically. This would be typical where a multiplexer serves a number of IP network users and then feeds directly into a router which immediately reads the content of the entire link into its routing processor and then does the demultiplexing in memory from where it will be converted directly into IP packets.
Often, a multiplexer and demultiplexer are combined together into a single piece of equipment, which is usually referred to simply as a "multiplexer". Both pieces of equipment are needed at both ends of a transmission link because most communications systems transmit in both directions.
A real world example is the creation of telemetry for transmission from the computer/instrumentation system of a satellite, space craft or other remote vehicle to a ground-based system.In analog circuit design, a multiplexer is a special type of analog switch that connects one signal selected from several inputs to a single output.
November 22, 2011