The optical fiber fusion splice device comprises a pair of electric discharge electrodes provided opposed to each other along a predetermined axis, a conductor electrode disposed on one side with respect to a plane with the predetermined axis contained therein, and section for generating electrostatic attraction in the direction tending from the above-described plane toward the one side, between the conductor electrode and the electric discharge path produced between the electric discharge electrodes. The means for generating electrostatic attraction is connected to the conductor electrode. This fusion splicer fusion-splices together the end portions of optical fibers disposed on the other side with respect to the above plane by electric discharge produced between the electric discharge electrodes.
In this optical fiber fusion splicer, when electric discharge is generated between the opposed electric discharge electrodes, electrostatic attraction is generated between the path of electric discharge (hereinafter, referred to as electric discharge path) and the conductor electrode disposed on the lower side with respect to the predetermined axis which extends between the electric discharge electrodes, namely, on the one side with respect to the plane including the predetermined axis. This electrostatic attraction attracts the electric discharge path towards the conductor electrode side (namely, towards the one side with respect to the above-described plane). Thus, the middle portion of the electric discharge path is prevented from being attracted upward by ambient air convection whereupon the electric discharge path to be curved into a bow-shape. Thus, the optical fiber fusion splicer according to the present invention is capable of fusion-splicing the end portions of optical fibers to each other successfully, regardless of the distance between the electric discharge electrodes. This optical fiber fusion splicer is extremely effective, for example, in the case where the distance between the electric-discharge electrodes must be set large for collectively or in one operation fusion-splicing the respective cores of multi-core ribbon-type optical fibers. The electric-discharge path refers to the path of electrons or ionized gases, etc. resulting from electric discharge generated between the electric-discharge electrodes and is attributed to positive column, for example. Also, the electrostatic attraction refers to coulomb attraction, or attraction generated in accordance with Coulomb's law, being effectively active between areas charged with opposite polarities by electrostatic induction.
June 24, 2011