In April 1995, a young Chinese chemistry student at Beijing University lay dying in a Beijing hospital. She was in a coma, and although her doctors had performed numerous tests, they could not discover what was killing her. In desperation, a student friend posted an SOS describing her symptoms to several medical bulletin boards and mailing lists on the Internet, the ever-growing international array of computer linkages through telephone lines. Around the world, doctors who regularly checked these electronic bulletin boards and lists responded immediately.
In Washington, D.C., Dr. John Aldis, a physician with the U.S. Department of State, saw the message from China. He had recently served in Beijing; he knew the woman's doctors. Using the Internet, he forwarded the message to colleagues in America. Soon an international contingent of doctors joined the e-mail discussion. A consensus emerged--the woman might have been poisoned with thallium, a metal resembling lead. A Beijing laboratory confirmed this diagnosis--the thallium concentration in her body was as much as 1,000 times normal. More e-mail communication ensued, as treatment was suggested and then adjusted. The woman slowly began to recover. Well over a year later, the international medical community was still keeping tabs on her condition through the electronic medium that saved her life.
This story underscores society's increasing reliance on a system of global communication that can link you equally easily with someone in the next town or halfway around the world. People in all walks of life use the telephone system every day to solve a problem or make a date or transfer money or hire an employee. They can do these things by making telephone calls from stationary telephones or from handheld mobile telephones, by sending faxes, or by using computers and dialing into the Internet.
The expanded telephone-line capacity that has allowed the growth of these forms of communication is a recent phenomenon. The United States has enjoyed domestic telephone service for more than a century, but overseas telephone calls were difficult until relatively recently. For a number of years after World War II, calls to Europe or Asia relied on shortwave radio signals that bounced off the ionosphere, the electrically active layer of the atmosphere that lies between 50 and 250 miles above the earth's surface. It sometimes took an operator hours to set up a 3-minute call, and if you got through, the connection was often noisy with static.
In 1956, the first transatlantic copper wire cable allowed simultaneous transmission of 36 telephone conversations--a cause for celebration then, a paltry number today. Other cables followed; by the early 1960s, overseas telephone calls had reached 5 million per year. Then came satellite communication in the middle 1960s, and by 1980, the telephone system carried some 200 million overseas calls per year. But as demands on the telecommunication system continued to increase, the limitations of current technology became glaringly apparent. Then, in the late 1980s, came the fruition of a variety of efforts to find the Holy Grail of communication--the harnessing of light itself as a way to communicate.
August 31, 2011