It's 11:30 p.m., you're in San Francisco on business, and you want to check for messages at your office in Virginia. First you dial in and get your voice mail. Next you plug your portable computer into the hotel-room telephone jack, hit a few keys, and pick up e-mail from a potential client in South Africa, your sister in Albuquerque, and a business associate in Detroit. Before composing your responses, you do a quick bit of research on the Internet, tracking down the name of the on-line news group you had mentioned to the man in Detroit and the title of a book you wanted to recommend to your sister. A few more keystrokes and in moments your electronic letters have reached Albuquerque and Detroit. Then, knowing that the time difference means the next workday has begun in South Africa, you call there without a second thought.
As recently as 10 years ago, such nearly instantaneous, world-shrinking communication would not have been possible; critical pieces of technology in both computing and communication were just emerging. Then, in 1988, the first transatlantic fiber-optic cable was laid, and the "information superhighway" was on its way to becoming reality.
Optical fibers form the backbone of the global telecommunication system. These remarkable strands of glass--each thinner than a human hair, yet stronger, length for length, than steel--were designed to carry the vast amounts of data that can be transmitted via a relatively new form of light--tightly focused laser beams. Together, lasers and optical fibers have dramatically increased the capacity of the international telephone system. With equally striking improvements in computing, the new communication technology has fueled the exponential growth of the phenomenon known as the Internet.
The following article describes the conception and development of both laser technology and the fibers that allow transmission of a light signal over long distances. It shows how basic research, in this case dating back to Albert Einstein's work in quantum mechanics, can lead to important practical applications. As often happens, the trail took many twists and turns, none of which could have been predicted when the research began.
August 31, 2011