May 16, 1960: Theodore Maiman demonstrates first laser at Hughes Research Laboratories in Malibu.
December 1960: Ali Javan makes first helium-neon laser at Bell Labs, the first laser to emit a steady beam.
Circa 1960: George Goubau at Army Electronics Command Laboratory, Bell Telephone Laboratories and Standard Telecommunication Laboratories begin investigating hollow optical waveguides with regularly spaced lenses
January 1961: Charles C. Eaglesfield proposes hollow optical pipeline made of reflective pipes
May 1961: Elias Snitzer of American Optical publishes theoretical description of single-mode fibers.
1962-63: Alec Reeves at Standard Telecommunications Laboratories in Harlow, UK, commissions a group to study optical waveguide communications under Antoni E. Karbowiak. One system they study is optical fiber.
Autumn 1962: Four groups nearly simultaneously make first semiconductor diode lasers, but they operate only pulsed at liquid-nitrogen temperature. Robert N. Hall's group at General Electric is first.
1963: Karbowiak proposes flexible thin-film waveguide.
December 1964: Charles K. Kao takes over STL optical communication program when Karbowiak leaves to become chair of electrical engineering at the University of New South Wales. Kao and George Hockham soon abandon Karbowiak's thin-film waveguide in favor of single-mode optical fiber.
January 1966: Kao tells Institution of Electrical Engineers in London that fiber loss could be reduced below 20 decibels per kilometer for inter-office communications.
Early 1966: F. F. Roberts starts fiber-optic communications research at British Post Office Research Laboratories
July 1966: Kao and Hockham publish paper outlining their proposal in the Proceedings of the Institution of Electrical Engineers.
July 1966: John Galt at Bell Labs asks Mort Panish and Izuo Hayashi to figure out why diode lasers have high thresholds at room temperature.
September 1966: Alain Werts, a young engineer at CSF in France, publishes proposal similar to Kao's in French-language journal L'Onde Electronique, but CSF does nothing further for lack of funding.
1966: Roberts tells William Shaver, a visitor from the Corning Glass Works, about interest in fiber communications. This leads Robert Maurer to start a small research project on fused-silica fibers.
1966: Kao travels to America early in year, but fails to interest Bell Labs. He later finds more interest in Japan.
Early 1967: British Post Office allocates an extra 12 million pounds to research; some goes to fiber optics.
Early 1967: Shojiro Kawakami of Tohoku University in Japan proposes graded-index optical fibers.
Summer 1967: Corning summer intern Cliff Fonstad makes fibers. Loss is high, but Maurer decides to continue the research using titania-doped cores and pure-silica cladding.
October 1967: Clarence Hansell dies at 68.
Late 1967: Maurer recruits Peter Schultz from Corning's glass chemistry department to help making pure glasses.
January 1968: Donald Keck starts work for Maurer as the first full-time fiber developer at Corning. The team also includes Frank Zimar, who draws fiber in a high-temperature furnace he built
1968: Kao and M. W. Jones measure intrinsic loss of bulk fused silica at 4 decibels per kilometer, the first evidence of ultratransparent glass, prompting Bell Labs to seriously consider fiber optics.
August 1968: Dick Dyott of British Post Office picks up suggestion for pulling clad optical fibers from molten glass in a double crucible.
1969: Martin Chown of STL demonstrates fiber-optic repeater at Physical Society exhibition.
April 1970: STL demonstrates fiber optic transmission at Physics Exhibition in London.
Spring 1970: First continuous-wave room-temperature semiconductor lasers made in early May by Zhores Alferov's group at the Ioffe Physical Institute in Leningrad (now St. Petersburg) and on June 1 by Mort Panish and Izuo Hayashi at Bell Labs.
June 30, 1970: AT&T introduces Picturephone in Pittsburgh. The telephone monopoly plans to install millimeter waveguides to provide the needed extra capacity.
Summer 1970: Maurer, Donald Keck, Peter Schultz, and Frank Zimar at Corning develop a single-mode fiber with loss of 17 dB/km at 633 nanometers by doping titanium into fiber core.
September 30, 1970: Maurer announces results at London conference devoted mainly to progress in millimeter waveguides.
November 1970: Measurements at British Post Office and STL confirm Corning results.
Late Fall 1970: Charles Kao leaves STL to teach at Chinese University of Hong Kong; Murray Ramsay heads STL fiber group.
1970-1971: Dick Dyott at Post Office and Felix Kapron of Corning separately find pulse spreading is lowest at 1.2 to 1.3 micrometers.
May 1971: Murray Ramsay of Standard Telecommunication Labs demonstrates digital video over fiber to Queen Elizabeth at the Centenary of the Institution of Electrical Engineers.
October 13, 1971: Alec Reeves dies in London.
1971-1972: Unable to duplicate Corning's low loss, Bell Labs, the University of Southampton, and CSIRO in Australia experiment with liquid-core fibers.
1971-1972: Focus shifts to graded-index fibers because single-mode offers few advantages and many problems at 850 nanometers.
June 1972: Maurer, Keck and Schultz make multimode germania-doped fiber with 4 decibel per kilometer loss and much greater strength than titania-doped fiber.
Late 1972: STL modulates diode laser at 1 Gbit/s; Bell Labs stops its last work on hollow light pipes.
December 1972: John Fulenwider proposes a fiber-optic communication network to carry video and other signals to homes at International Wire and Cable Symposium.
1973: John MacChesney develops modified chemical vapor deposition process for fiber manufacture at Bell Labs.
Mid-1973: Diode laser lifetime reaches 1000 hours at Bell Labs.
Spring 1974: Bell Labs settles on graded-index fibers with 50- to 100 micrometer cores.
December 7, 1974: Heinrich Lamm dies at 66
February 1975: Bell completes installation of 14 kilometers of millimeter waveguide in New Jersey. After tests, Bell declares victory and abandons the technology.
June 1975: First commercial continuous-wave semiconductor laser operating at room temperature offered by Laser Diode Labs.
September 1975: First non-experimental fiber-optic link installed by Dorset (UK) police after lightning knocks out their communication system
October 1975: British Post Office begins tests of millimeter waveguide; like Bell it declares the tests successful, but never installs any.
1975: Dave Payne and Alex Gambling at University of Southampton calculate pulse spreading should be zero at 1.27 micrometers.
January 13, 1976: Bell Labs starts tests of graded-index fiber-optic system transmitting 45 million bits per second at its Norcross, Georgia plant. Laser lifetime is main problem.
Early 1976: Valtec launches Communications Fiberoptics division.
Early 1976: Masaharu Horiguchi (NTT Ibaraki Lab) and Hiroshi Osanai (Fujikura Cable) make first fibers with low loss -- 0.47 decibel per kilometer -- at long wavelengths, 1.2 micrometers.
March 1976: Japan's Ministry for International Trade and Industry announces plans for Hi-OVIS fiber-optic "wired city" experiment involving 150 homes.
Spring 1976: Lifetime of best laboratory lasers at Bell Labs reaches 100,000 hours (10 years) at room temperature.
Summer 1976: Horiguchi and Osanai open third window at 1.55 micrometers.
July 1976: Corning sues ITT alleging infringement of American patents on communication fibers.
Late 1976: J. Jim Hsieh makes InGaAsP lasers emitting continuously at 1.25 micrometers.
Spring 1977: F. F. Roberts reaches mandatory retirement age of 60; John Midwinter becomes head of fiber-optic group at British Post Office.
April 1, 1977: AT&T sends first test signals through field test system in Chicago's Loop district.
April 22, 1977: General Telephone and Electronics sends first live telephone traffic through fiber optics, 6 Mbit/s, in Long Beach, California.
May 1977: Bell System starts sending live telephone traffic through fibers at 45 Mbit/s fiber link in downtown Chicago.
June 1977: British Post Office begins sending live telephone traffic through fibers in underground ducts near Martlesham Heath.
June 29, 1977: Bell Labs announces one-million hours (100-year) extrapolated lifetime for diode lasers.
Summer 1977: F. F. Roberts dies of heart attack.
October 1977: Valtec "acquires" Comm/Scope, but Comm/Scope owners soon gain control of Valtec.
Late 1977: AT&T and other telephone companies settle on 850 nanometer gallium arsenide light sources and graded-index fibers for commercial systems operating at 45 million bits per second.
1977-1978: Low loss at long wavelengths renews research interest in single-mode fiber.
May 22-23, 1978: Fiber Optic Con, first fiber-optic trade show, held in Boston. (This document copyright Jeff Hecht,
1978: Optical fibers begin carrying signals to homes in Japan's Hi OVIS project.
August 1978: NTT transmits 32 million bits per second through a record 53 kilometers of graded-index fiber at 1.3 micrometers.
September 1978: Richard Epworth reports modal noise problems in graded-index fibers.
September 1978: France Telecom announces plans for fiber to the home demonstration in Biarritz, connecting 1500 homes in early 1983.
1978: AT&T, British Post Office and STL commit to developing a single mode transatlantic fiber cable, using the new 1.3-micrometer window, to be operational by 1988. By the end of the year, Bell Labs abandons development of new coaxial cables for submarine systems.
Late 1978: NTT Ibaraki lab makes single-mode fiber with record 0.2 decibel per kilometer loss at 1.55 micrometers.